
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2016/0344688 A1 

US 2016.0344688A1 

Lakhera et al. (43) Pub. Date: Nov. 24, 2016 

(54) COMMUNICATING VIA IPV6-ONLY (52) U.S. Cl. 
NETWORKS USING IPV4 LITERAL CPC ......... H04L 61/251 (2013.01); H04L 61/15 II 
IDENTIFIERS (2013.01); H04L 61/2521 (2013.01); H04W 

80/045 (2013.01) 
(71) Applicant: Apple Inc., Cupertino, CA (US) 

(57) ABSTRACT 
(72) Inventors: Prabhakar Lakhera, San Jose, CA Techniques are disclosed relating to communicating, via 

(US); Vincent Lubet, Los Altos, CA IPv6-only networks, with devices on IPv4 networks. In 
(US); David Schinazi, San Francisco, Some embodiments, a mobile device stores program instruc 
CA (US); Thomas F. Pauly, Cupertino, tions executable to: generate a request to access a network 
CA (US) server that specifies an IPv4 literal, query a DNS server 

using a reserved name to determine an IPv6 prefix, synthe 
(21) Appl. No.: 14/719,889 size an IPv6 address using the prefix and the IPv4 literal, 

create a transport layer connection to the network server 
(22) Filed: May 22, 2015 using the synthesized IPv6 address, and transmit multiple 

packets using the connection, without re-translating the IPv4 
Publication Classification literal for the packets. These per-connection translation 

techniques may reduce power consumption and/or process 
(51) Int. Cl. ing time relative to per-packet translation, in Some embodi 

H04L 29/12 (2006.01) mentS. 

IPv6 

Synthesized 
IPv6 address 

User Device 
106 

example.com ? 

Synthesized 
AAAA record 

IPv4 address 

example.Com ? 
DNS Server in N ge 

A record (IPv4 

Web Server 
330 

address) 

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Nov. 24, 2016 Sheet 1 of 7 US 2016/0344688 A1 

  



Patent Application Publication Nov. 24, 2016 Sheet 2 of 7 US 2016/0344688 A1 

Device ACCeSS NetWOrk Internet 

Nifty IPV4 Internet 
DNS64 240 
230 

IPV6 Internet 
250 

IPv6 IPv6-Only Network 
Application 220 

210 

FIG 2 

    

  

  

  



US 2016/0344688 A1 Nov. 24, 2016 Sheet 3 of 7 Patent Application Publication 

  

  

  

  

  

  

  

  

  

  



US 2016/0344688 A1 

SQIF — 

Nov. 24, 2016 Sheet 4 of 7 Patent Application Publication 

  



US 2016/0344688 A1 Nov. 24, 2016 Sheet 5 of 7 

@@@ MJOM/9NHO 

Patent Application Publication 

    



Patent Application Publication Nov. 24, 2016 Sheet 6 of 7 US 2016/0344688 A1 

UICC(s) 
610 

Processor(s) 
602 

Display 
Circuitry 
604 

Bluetooth / 
WLAN 
629 

Radio GSM / Angga 
LTE 
630 Antenna 

636 

FIG. 6 

  



Patent Application Publication Nov. 24, 2016 Sheet 7 of 7 US 2016/0344688 A1 

Generate a request to access a network server that Specifies an IPv4 literal 
identifier Of the network Server 

710 

Quenya DNS server using a reserved name to determine an IPv6 prefix usable for 
IPv6 address synthesis 

720 

Synthesize an IPv6 address based on the determined IPv6 prefix and the IPv4 
literal 
730 

Create a network SeSSion to the network Server and aSSOCiate the network SeSSion 
With the synthesized IPv6 address 

740 

Transmit a plurality of packets to the network server using the network Session and 
using the synthesized IPv6 address for each of the plurality of packets 

750 

FIG 7 

  



US 2016/0344688 A1 

COMMUNICATING VA PV6-ONLY 
NETWORKS USING IPV4 LITERAL 

IDENTIFIERS 

TECHNICAL FIELD 

0001. The present application relates to wireless devices, 
and more particularly to techniques for communicating, via 
IPv6-only networks, with devices on IPv4 networks. 

DESCRIPTION OF THE RELATED ART 

0002 Wireless communication systems are rapidly grow 
ing in usage. Further, wireless communication technology 
has evolved from Voice-only communications to also 
include the transmission of data, Such as Internet and mul 
timedia content. In order to enable their wireless device to 
access a wireless communication network (e.g., a cellular 
telecommunication network) which provides such services, 
a user may in some cases be required to Subscribe to a 
service provider (a “carrier'), who in turn may provide such 
services to the user, e.g., via a wireless communication 
network which they operate. 
0003 Wireless carriers generally would like to deploy 
pure Internet Protocol version 6 (IPv6) data networks. There 
are various reasons for this, including depletion of IPv4 
addresses. An IPv6-only implementation will likely use 
NAT64/DNS64 to facilitate communication between IPv6 
and IPv4 hosts in order to reach IPv4-only entities on other 
networks such as the Internet. In the NAT64/DNS64 
scheme, when a pure IPv6 device attempts to connect to an 
IPv4-only host, a DNS64 server synthesizes an IPv6 address 
for the host (e.g., returning an AAAA record when only an 
A record was found for the IPv4-only host). ANAT64 server 
is then used to route traffic, based on a prefix of the 
synthesized IPv6 address. NAT64 is specified in RFC 6146, 
M. Bagnulo, “Stateful NAT64: Network Address and Pro 
tocol Translation from IPv6 Clients to IPv4 Servers.” April 
2011, which is incorporated by reference herein in its 
entirety. DNS64 is specified in RFC 6147, M. Bagnulo, 
“DNS64: DNS Extensions for Network Address Translation 
from IPv6 Clients to IPv4 Servers.” April 2011, which is 
incorporated by reference herein in its entirety. 
0004. Unfortunately, many current applications use IPv4 

literal addresses rather than hostnames. In this case, DNS is 
not implicated, leaving these applications unable to com 
municate with IPv4 hosts via pure IPv6 networks even using 
NAT64/DNS64. Therefore, techniques for communicating 
with IPv4 resources via pure IPv6 networks are desired. 

SUMMARY 

0005 Embodiments described herein relate to a user 
equipment device (UE) and associated techniques for com 
municating, via IPv6-only networks, with devices on IPv4 
networks. 
0006. In some embodiments, an apparatus includes at 
least one antenna, one or more radios coupled to the antenna 
(s), one or more processing elements, and one or more 
memories storing program instructions that are executable to 
cause the apparatus to perform various operations, including 
to generate a request to access a network server, where the 
request specifies an Internet Protocol version 4 (IPv4) literal 
identifier of the network server. In these embodiments, the 
operations include to query a domain name system (DNS) 
server using a reserved name, to determine an IPv6 prefix 

Nov. 24, 2016 

usable for IPv6 address synthesis. In some embodiments, 
network traffic with the prefix is routable to a network 
address translation (NAT) server that is for routing commu 
nications between an Internet Protocol version 6 (IPv6) 
network of the device and an IPv4 network of the network 
server. In some embodiments, the operations include to 
synthesize an IPv6 address based on the determined IPv6 
prefix and the IPv4 literal identifier, to create a transport 
layer connection to the network server, and to associate the 
transport layer connection with the synthesized IPv6 
address. In some embodiments, the operations include to 
transmit, using the transport layer connection, multiple 
packets to the network server via the NAT server, and the 
transmitting uses the synthesized IPv6 address for each of 
the packets while the IPv4 literal identifier is not re-trans 
lated by the device for the different packets. 
0007. In some embodiments, a method includes generat 
ing a request to access a network server and the request 
specifies an Internet Protocol version 4 (IPv4) literal iden 
tifier of the network server. In these embodiments, the 
method includes querying a domain name system (DNS) 
server using a reserved name, to determine an IPv6 prefix 
usable for IPv6 address synthesis. In these embodiments, the 
method includes synthesizing an IPv6 address based on the 
determined IPv6 prefix and the IPv4 literal identifier, cre 
ating a network session to the network server, and associ 
ating the network session with the synthesized IPv6 address. 
In these embodiments, the method includes transmitting, 
using the network session, multiple packets to the network 
server via the NAT server and the transmitting uses the 
synthesized IPv6 address for each of the packets. In these 
embodiments, the IPv4 literal identifier is not re-translated 
for ones of the packets. 
0008. In some embodiments, a non-transitory computer 
readable medium has instructions stored thereon that are 
executable by a computing device to perform various opera 
tions including generating a request to access a network 
server, that specifies an Internet Protocol version 4 (IPv4) 
literal identifier of the network server. In these embodi 
ments, the operations further comprise querying a domain 
name system (DNS) server using a reserved name, to 
determine an IPv6 prefix usable for IPv6 address synthesis. 
In these embodiments, the operations further comprise Syn 
thesizing an IPv6 address based on the determined IPv6 
prefix and the IPv4 literal identifier, creating a transport 
layer session to the network server, and associating the 
network session with the synthesized IPv6 address. In these 
embodiments, the operations further comprise transmitting a 
plurality of packets to the network server via a NAT server, 
using the synthesized IPv6 address, without re-translating 
the IPv4 literal identifier for the different packets. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009. A better understanding of the present disclosure 
can be obtained when the following detailed description of 
the embodiments is considered in conjunction with the 
following drawings. 
0010 FIG. 1 illustrates an exemplary mobile device 
according to some embodiments. 
0011 FIG. 2 illustrates exemplary communications via 
an IPv6-only network, according to Some embodiments. 
(0012 FIG. 3 illustrates exemplary DN64/NAT64 com 
munications, according to some embodiments. 



US 2016/0344688 A1 

0013 FIG. 4 illustrates exemplary translation of an IPv4 
literal identifier, according to Some embodiments. 
0014 FIG. 5 illustrates exemplary programming inter 
faces and communication layers. 
0015 FIG. 6 is an example block diagram of a mobile 
device, according to some embodiments. 
0016 FIG. 7 is a flow diagram illustrating a method for 
translating an IPv4 literal address, according to some 
embodiments. 
0017 While the embodiments described in this disclo 
Sure may be susceptible to various modifications and alter 
native forms, specific embodiments thereof are shown by 
way of example in the drawings and are herein described in 
detail. It should be understood, however, that the drawings 
and detailed description thereto are not intended to limit the 
embodiments to the particular form disclosed, but on the 
contrary, the intention is to cover all modifications, equiva 
lents and alternatives falling within the spirit and scope of 
the appended claims. 
0018. This specification includes references to “one 
embodiment,” “an embodiment,” and/or "some embodi 
ments.” The appearances of these phrases do not necessarily 
refer to the same embodiment(s). Particular features, struc 
tures, or characteristics may be combined in any Suitable 
manner consistent with this disclosure. 
0019 Various units, circuits, or other components may be 
described or claimed as “configured to perform a task or 
tasks. In Such contexts, “configured to’ is used to connote 
structure by indicating that the units/circuits/components 
include structure (e.g., circuitry) that performs the task or 
tasks during operation. As such, the unit/circuit/component 
can be said to be configured to perform the task even when 
the specified unit/circuit/component is not currently opera 
tional (e.g., is not on). The units/circuits/components used 
with the “configured to language include hardware—for 
example, circuits, memory storing program instructions 
executable to implement the operation, etc. Reciting that a 
unit/circuit/component is “configured to perform one or 
more tasks is expressly intended not to invoke 35 U.S.C. 
S112(f) for that unit/circuit/component. 

DETAILED DESCRIPTION OF THE 
EMBODIMENTS 

0020. This disclosure initially lists relevant acronyms and 
a glossary. It then describes, with reference to FIGS. 1-3, an 
exemplary mobile device and communications between 
IPv6-only and IPv4 networks. Exemplary techniques for 
IPv4 literal translation are discussed with reference to FIGS. 
4-7. In some embodiments, translation is performed on a 
per-connection or per-session basis. This may reduce power 
consumption and/or processing time relative to per-packet 
translation, for example. 

ACRONYMS 

0021. The following acronyms are used in the present 
disclosure. 
0022 3GPP. Third Generation Partnership Project 
0023 API: Application Programming Interface 
0024. BSD: Berkeley Software Distribution 
0025 CDMA: Code Division Multiple Access 
0026 DNS: Domain Name System 
0027 GSM: Global System for Mobile Communications 
0028 IP: Internet Protocol 

Nov. 24, 2016 

(0029. LTE: Long Term Evolution 
0030 NAT: Network Address Translation 
0031 RAT: Radio Access Technology 
0032 RX: Receive 
0033 TCP. Transmission Control Protocol 
0034. TX: Transmit 
0035 UDP: User Datagram Protocol 
0036 UE: User Equipment 
0037 UMTS: Universal Mobile Telecommunications 
System 

TERMS 

0038. The following is a glossary of terms used in the 
present application: 
0039 Memory Medium—Any of various types of 
memory devices or storage devices. The term “memory 
medium' is intended to include an installation medium, e.g., 
a CD-ROM, floppy disks, or tape device; a computer system 
memory or random access memory such as DRAM, DDR 
RAM, SRAM, EDO RAM, Rambus RAM, etc.; a non 
Volatile memory Such as a Flash, magnetic media, e.g., a 
hard drive, or optical storage; registers, or other similar 
types of memory elements, etc. The memory medium may 
include other types of memory as well or combinations 
thereof. In addition, the memory medium may be located in 
a first computer system in which the programs are executed, 
or may be located in a second different computer system 
which connects to the first computer system over a network, 
such as the Internet. In the latter instance, the second 
computer system may provide program instructions to the 
first computer for execution. The term “memory medium’ 
may include two or more memory mediums which may 
reside in different locations, e.g., in different computer 
systems that are connected over a network. The memory 
medium may store program instructions (e.g., embodied as 
computer programs) that may be executed by one or more 
processors. 
0040 Carrier Medium—a memory medium as described 
above, as well as a physical transmission medium, Such as 
a bus, network, and/or other physical transmission medium 
that conveys signals such as electrical, electromagnetic, or 
digital signals. 
0041 Computer System—any of various types of com 
puting or processing systems, including a personal computer 
system (PC), mainframe computer system, workstation, 
network appliance, Internet appliance, personal digital assis 
tant (PDA), personal communication device, Smart phone, 
television system, grid computing system, or other device or 
combinations of devices. In general, the term "computer 
system’ can be broadly defined to encompass any device (or 
combination of devices) having at least one processor that 
executes instructions from a memory medium. 
0042. User Equipment (UE) (or “UE Device') any of 
various types of computer systems devices which are mobile 
or portable and which performs wireless communications. 
Examples of UE devices include mobile telephones or smart 
phones (e.g., iPhoneTM, AndroidTM-based phones), portable 
gaming devices (e.g., Nintendo DSTM, PlayStation Por 
tableTM, Gameboy AdvanceTM, iPhoneTM), laptops, PDAs, 
portable Internet devices, music players, data storage 
devices, other handheld devices, as well as wearable devices 
Such as wrist-watches, headphones, pendants, earpieces, etc. 
In general, the term “UE” or “UE device' can be broadly 
defined to encompass any electronic, computing, and/or 



US 2016/0344688 A1 

telecommunications device (or combination of devices) 
which is easily transported by a user and capable of wireless 
communication. 
0043 Base Station. The term “Base Station' has the full 
breadth of its ordinary meaning, and at least includes a 
wireless communication station installed at a fixed location 
and used to communicate as part of a wireless telephone 
system or radio system. 
0044 Processing Element refers to various elements or 
combinations of elements. Processing elements include, for 
example, circuits such as an ASIC (Application Specific 
Integrated Circuit), portions or circuits of individual proces 
Sor cores, entire processor cores, individual processors, 
programmable hardware devices such as a field program 
mable gate array (FPGA), and/or larger portions of systems 
that include multiple processors. 
0045 Automatically refers to an action or operation 
performed by a computer system (e.g., Software executed by 
the computer system) or device (e.g., circuitry, program 
mable hardware elements, ASICs, etc.), without user input 
directly specifying or performing the action or operation. 
Thus the term “automatically' is in contrast to an operation 
being manually performed or specified by the user, where 
the user provides input to directly perform the operation. An 
automatic procedure may be initiated by input provided by 
the user, but the Subsequent actions that are performed 
“automatically are not specified by the user, i.e., are not 
performed “manually', where the user specifies each action 
to perform. For example, a user filling out an electronic form 
by selecting each field and providing input specifying infor 
mation (e.g., by typing information, selecting check boxes, 
radio selections, etc.) is filling out the form manually, even 
though the computer system must update the form in 
response to the user actions. The form may be automatically 
filled out by the computer system where the computer 
system (e.g., Software executing on the computer system) 
analyzes the fields of the form and fills in the form without 
any user input specifying the answers to the fields. As 
indicated above, the user may invoke the automatic filling of 
the form, but is not involved in the actual filling of the form 
(e.g., the user is not manually specifying answers to fields 
but rather they are being automatically completed). The 
present specification provides various examples of opera 
tions being automatically performed in response to actions 
the user has taken. 

FIG. 1—User Equipment 
0046 FIG. 1 illustrates an example user equipment (UE) 
106 (which may also be referred to as mobile device 106) 
according to some embodiments. UE device 106 may 
include a housing 12 which may be constructed from any of 
various materials. UE 106 may have a display 14, which 
may be a touch screen that incorporates capacitive touch 
electrodes. Display 14 may be based on any of various 
display technologies. The housing 12 of the UE 106 may 
contain or comprise openings for any of various elements, 
such as home button 16, speaker port 18, and other elements 
(not shown). Such as microphone, data port, and possibly 
various other types of buttons, e.g., volume buttons, ringer 
button, etc. 
0047. The UE 106 may support multiple radio access 
technologies (RATs). For example, UE 106 may be config 
ured to communicate using any of various RATS Such as two 
or more of Global System for Mobile Communications 

Nov. 24, 2016 

(GSM), Universal Mobile Telecommunications System 
(UMTS), Code Division Multiple Access (CDMA) (e.g., 
CDMA2000 1xRTT or other CDMA radio access technolo 
gies), Long Term Evolution (LTE), LTE Advanced (LTE-A), 
and/or other RATs. For example, the UE 106 may support at 
least two radio access technologies such as LTE and GSM. 
Various different or other RATs may be supported as desired. 
0048 One or more antennas of UE 106 may receive a 
wide range of frequencies such as from 600 MHz up to 3 
GHz. In some embodiments, the UE 106 is configured to 
support LTE, W-CDMA (W), TDS-CDMA (T) and/or GSM 
(G) radio access technologies. FIG. 6, discussed in further 
detail below, is a block diagram of exemplary components 
included in mobile device 106, according to some embodi 
mentS. 

FIG. 2. Overview of IPv6 and IPv4 Communications 

0049 FIG. 2 illustrates exemplary connectivity of an 
application 210 to different portions of the internet. In the 
illustrated embodiment, IPv6 application 210 is configured 
to communicate with both the IPv4 portion of the internet 
and the IPv6 portion of the internet via IPv6-only network 
220. In the illustrated embodiment, IPv6-only network 220 
is a cellular network provided by a cellular carrier. In other 
networks, the disclosed techniques may be implemented 
using any of various types of IPv6-only networks. 
0050. As shown, IPv6 application 210 is configured to 
communicate with the IPv6 internet (e.g., devices with IPv6 
addresses) directly via the IPv6-only network 220. As 
shown, in the illustrated embodiment, the access network 
provides provider translation (PLAT) via NAT64/DNS64 to 
access the IPv4 internet (e.g., devices with IPv4 addresses 
and not IPv6 addresses). Various techniques discussed 
below may facilitate access to IPv4 internet 240, even in 
situations where traditional NAT64/DNS64 techniques may 
fail. 

FIG. 3 NAT64/DNS64 Overview 

0051 FIG. 3 illustrates an exemplary technique for com 
munication using NAT64/DNS64. In the illustrated embodi 
ment, user device 106 requests a website with the hostname 
“example.com” which is provided by web server 330. User 
device 106, in the illustrated embodiment, is coupled to an 
IPv6-only network. Web server 330, in the illustrated 
embodiment, does not have an IPv6 address. 
0052. In response to the request, DNS64 server 320 
requests an IPv6 AAAA record (a 128-bit value that maps a 
hostname to a 128-bit IPv6 address). DNS server 340 
indicates that it cannot provide an AAAA record, so DNS64 
server 320 requests and receives an IPv4 A record instead 
(which indicates a 32-bit IPv4 literal value such as “69.9. 
64. 11, where each number in the value is represented using 
eight bits, for example). 
0053 DNS64 server 320 then synthesizes an AAAA 
record for the web server and provides the synthesized 
record to user device 106. In some embodiments, the syn 
thesized address is formed as <96 bits of prefix use to route 
traffic to NAT64 3.10>: <32 bits of the IPv4 address of the 
IPv4-only destination>. The user device then communicates 
with web server 330 via NAT64310 using the synthesized 
IPv6 address. NAT64, in some embodiments, is configured 
to interface between an IPv4 network and an IPv6 network 
and map traffic between the two (e.g., by performing trans 



US 2016/0344688 A1 

lations for packets). NAT64 may be configured to perform 
stateless and/or stateful translations between the IPv4 and 
IPv6 networks. 
0054. Unfortunately, many applications (including web 
browsers, web applications, mobile applications, etc.) may 
specify IPv4 addresses using IPv4 literals (e.g., “69.9.64. 
11) rather than using hostnames (e.g., example.com). In 
these situations, DNS may not be implicated and these 
applications may fail to reach web server 330 even in 
networks with DNS64/NAT64 (e.g., because IPv6 address 
synthesis never occurs). 
0055 One proposed technique to handle IPv4 literals is 
called 464XLAT, which is described in RFC 6877, M. 
Mawatari, “464XLAT: Combination of Stateful and State 
less Translation.” April 2013, which is incorporated by 
reference herein in its entirety. 464XLAT uses a client side 
stateless translator (CLAT), at the socket level, to convert 
IPv4 packets into IPv6 packets to send to a NAT64 trans 
lator. For example, “when connecting to an IPv4 literal or 
IPv4 socket that require IPv4 connectivity, the CLAT func 
tion on the UE provides a private IPv4 address and IPv4 
default route on the host for the application to reference and 
bind to. Connections sourced from the IPv4 interface are 
immediately routed to the CLAT function and passed to the 
IPv6-only mobile network, destined for the PLAT (provider 
translator).” Packets translated by 464XLAT, however, each 
see two network address translation (NAT) traversals: one 
locally on the client and one by NAT64 in the network. 
464XLAT operates at a low level (e.g., below the transport 
layer) and it is not possible at these lower network layers to 
associate an IPv6 address with a higher-layer connection or 
session (e.g., a TCP connection) at the beginning of the 
connection. Thus, in 464XLAT, an IPv4 literal is re-trans 
lated by the device for each packet. This may increase power 
consumption and/or reduce communication speed relative to 
processing for non-literal IPv4 addresses. 
0056. Therefore, in some embodiments discussed in fur 
ther detail below, an IPv6 prefix is provided at higher-level 
interfaces (e.g., at the transport later or higher) and associ 
ated with a connection when the connection is created. In 
these embodiments, IPv4 to IPv6 translation is performed on 
a per-transport-layer-connection basis rather than on a per 
packet basis (e.g., the IPv4 literal identifier is translated 
once, up-front, for a given connection or session and the 
translation is used for multiple packets of the connection or 
session). 

FIG. 4 Exemplary Translation Technique at Transport 
Layer 

0057 FIG. 4 illustrates an exemplary technique for trans 
lating IPv4 literals, according to Some embodiments. In the 
illustrated embodiment, user device 106 is coupled to 
NAT64 310 and DNS64 320 via an IPv6-only network. 
NAT64310, in the illustrated embodiment, is coupled to 
web server 330 via an IPv4 network that does not support 
IPv6 addresses. 
0058 User device 106, in the illustrated embodiment, 
executes program code for application 410, network helper 
daemons 420, sockets interface 430, and kernel 440. In some 
embodiments, application 410 is configured to generate an 
IPv4 literal identifier. For example, application 410 may be 
a web browser and a user may enter an IPv4 literal as a 
desired web page. As another example, application 410 may 
be a non-browser application configured to generate the 

Nov. 24, 2016 

IPv4 literal based on Some user action (e.g., beginning a 
Video chat, selecting an option to download app data, etc.). 
In the illustrated embodiment, application 410 implements a 
userspace networking library 415. 
0059 Network helper daemons 420, in some embodi 
ments, may run as background processes and thus may not 
be under the direct control of user code (e.g., other than 
invoking an appropriate daemon directly or indirectly). In 
Some embodiments, userspace networking library 415 is 
under control of (e.g., included in or called by) an applica 
tion in the user space Such as application 410. 
0060. At step (1) in the illustrated example, the IPv4 TCP 
request is generated. Application 410 may use an application 
programming interface (API) above sockets interface 430 to 
indicate its intent to create a transport layer connection (e.g., 
a TCP or a UDP connection, among others) to an IPv4 
address literal. 
0061. At step (2) in the illustrated example, userspace 
networking library 415 attempts to connect to the IPv4 
literal address. In most cases the attempt will fail (e.g., 
unless the IPv4 literal is a link-local address). 
0062. At step (3) in the illustrated example, which may be 
performed concurrently with step (2), userspace networking 
library 415 creates a policy check at the kernel 440 level. 
0063. At step (4) in the illustrated example, based on the 
created policy check, a network helper daemon 420 checks 
the state of the device and detects whether the connection is 
going over an interface (e.g., a cellular network) that Sup 
ports IPv6 but not IPv4. 
0064. At step (5) in the illustrated example, the network 
helper daemon 420 creates a DNS query to “ipv4only.arpa.” 
a reserved name use to query DNS64320 to determine the 
prefix used to synthesize IPv6 addresses (e.g., Such that 
traffic with the prefix is routed through NAT64 server 310). 
In some embodiments, network helper daemon 420 deter 
mines the prefix from one or more received AAAA records 
using the techniques discussed in RFC 7050, T. Savolainen, 
“Discovery of the IPv6 Prefix Used for IPv6 Address 
Synthesis.” November 2013, which is incorporated by ref 
erence herein in its entirety. In other embodiments, other 
techniques may be used to determine the prefix. 
0065. At step (6) in the illustrated example, once the 
network helper daemon 420 receives a record from DNS64 
server 320 (or from a local cache), it synthesizes a new IPv6 
address using the determined prefix (which directs traffic to 
NAT64 server 310) and the 32-bit IPv4 address of web 
server 330. This may include using the prefix for the upper 
92 bits of the address and the IPv4 address for the lower 32 
bits of the address. 
0066. At step (7) in the illustrated example, the network 
helper daemon 420 sends a message back to application 410 
indicating that it should try to connect with the synthesized 
IPv6 address. The message may include the synthesized 
IPv6 address. 
0067. At step (8) in the illustrated example, the applica 
tion 410 creates a new transport layer connection to the 
synthesized IPv6 address via an IPv6 socket in sockets 
interface 430. In some embodiments, packets generated to 
the synthesized address are received by the NAT64 server 
310, which is configured to translate back to IPv4 and 
transmit the packets to web server 330. 
0068. In some embodiments, the two concurrent connec 
tion attempts (as initiated in step (1) and step (8)) are raced, 
e.g., similarly to the well-known happy eyeballs technique. 



US 2016/0344688 A1 

In these embodiments, once one of the attempts successfully 
connects, the other connection is closed and the Successful 
connection is sent back to application 410. At step (9), in the 
illustrated embodiment, the Successful connection via 
NAT64310 is provided to application 410 for communica 
tion with web server 330. 

0069. The example of FIG. 4 is not intended to limit the 
Scope of the present disclosure. Various steps may be 
performed by other circuitry or software modules in addition 
to and/or in place of the elements shown in FIG. 4. In various 
embodiments, the disclosed techniques for translating IPv4 
literals on a per-connection or per-session basis may reduce 
power consumption and/or processing time. 

FIG. 5 Exemplary Network Interfaces 

0070 FIG. 5 illustrates interfaces available to web 
browsers 505 and other networking applications 510. In the 
illustrated embodiment, interfaces in the user space include 
webkit 515, NSURL520, CFNetwork 525, TCP Connection 
Library 530, and BSD Sockets and other Networking Sys 
call library 535. In the illustrated embodiment, layers in the 
kernel space include a session layer (which includes Socket 
540 and input/output control (ioctl) for network devices 
545), a transport layer 555 (which may include TCP and 
UDP, for example), a network layer (which includes Internet 
Control Message Protocol (ICMP) 550 and IP layer 560), 
and a link layer 565. 
0071. As discussed above, in some embodiments mobile 
device 106 may initially translate an IPv4 literal for a session 
or connection at transport layer 555 and use the translation 
(e.g., the synthesized IPv6 address) for Subsequent commu 
nications using the session or connection. In some embodi 
ments, this functionality is available to web browsers 505 
and/or other networking applications 510 via various inter 
faces in the user space. For example, the functionality may 
be available using CFNetwork 525 or TCP connection 
library 530, in some embodiments. In other embodiments, 
the disclosed techniques for IPv4 translation may be per 
formed by an application Such as application 410 or any of 
various appropriate libraries or APIs not shown. In various 
embodiments, presence of a layer between an application 
and the Sockets interface may allow address Substitution at 
the start of a connection rather than on a per-packet basis. 
0072 Web kit 515, in some embodiments, is a layout 
engine Software component configured to render web pages. 
0073 NSURL 520, in some embodiments, is a class 
configured to hold a uniform resource locator (URL). In 
Some embodiments, it includes a URL loading system 
configured to present remote resources as data in memory or 
download remote resources to a local file system. In some 
embodiments, it specifies remote resources using URLs as 
set out in RFC 2396. 

0074 CFNetwork 525, in some embodiments, is an 
extension to traditional Socket APIs with run-loop integra 
tion, for example. CFNetwork 525, in some embodiments is 
configured to work with IPv4 and IPv6 addresses in a way 
that is transparent to the user (e.g., using networking dae 
mons, etc.). After resolving a CFNetwork host, sockets may 
be opened for further communication. 
0075 TCP connection library 530 and BSD sockets/sys 
call library 535 may provide lower-level access to network 
functionality. 

Nov. 24, 2016 

FIG. 6 Mobile Device 

0076 FIG. 6 illustrates an example simplified block 
diagram of a mobile device 106. As shown, the UE 106 may 
include a system on chip (SOC) 600, which may include 
portions for various purposes. The SOC 600 may be coupled 
to various other circuits of the UE 106. For example, the UE 
106 may include various types of memory (e.g., including 
NAND flash 610), a connector interface 620 (e.g., for 
coupling to a computer System, dock, charging station, etc.). 
the display 660, cellular communication circuitry 630 such 
as for LTE, GSM, etc., and short range wireless communi 
cation circuitry 629 (e.g., Bluetooth and WLAN circuitry). 
The UE 106 may further comprise two or more smart cards 
610 that each comprise SIM (Subscriber Identity Module) 
functionality, such as two or more UICC(s) (Universal 
Integrated Circuit Card(s)) 610. The cellular communication 
circuitry 630 may couple to one or more antennas, prefer 
ably two antennas 635 and 636 as shown. The short range 
wireless communication circuitry 629 may also couple to 
one or both of the antennas 635 and 636 (this connectivity 
is not shown for ease of illustration). 
(0077. As shown, the SOC 600 may include processor(s) 
602 which may execute program instructions for the UE 106 
and display circuitry 604 which may perform graphics 
processing and provide display signals to the display 660. 
The processor(s) 602 may also be coupled to memory 
management unit (MMU) 640, which may be configured to 
receive addresses from the processor(s) 602 and translate 
those addresses to locations in memory (e.g., memory 606, 
read only memory (ROM) 650, NAND flash memory 610) 
and/or to other circuits or devices, such as the display 
circuitry 604, cellular communication circuitry 630, short 
range wireless communication circuitry 629, connector I/F 
620, and/or display 660. The MMU 640 may be configured 
to perform memory protection and page table translation or 
set up. In some embodiments, the MMU 640 may be 
included as a portion of the processor(s) 602. 
(0078. The processor 602 of the UE device 106 may be 
configured to implement part or all of the features described 
herein, e.g., by executing program instructions stored on a 
memory medium (e.g., a non-transitory computer-readable 
memory medium). Alternatively (or in addition), processor 
602 may be configured as a programmable hardware ele 
ment, such as an FPGA (Field Programmable Gate Array), 
or as an ASIC (Application Specific Integrated Circuit). 
Alternatively (or in addition) the processor 602 of the UE 
device 106, in conjunction with one or more of the other 
components 600, 604, 606, 610, 620, 630, 635, 640, 650, 
660 may be configured to implement part or all of the 
features described herein. 
0079. In various embodiments, program instructions 
executable to perform disclosed operations may be stored on 
a non-transitory computer-readable medium. In some 
embodiments, the program instruction are executable by a 
computing device to perform the operations. As used herein, 
the term “executable' includes program instructions that for 
code that must be enabled, turned on, called by a function 
(e.g., when provided as part of an API), etc. In other words, 
even though the functionality specified by the program 
instructions may be temporarily disabled, the program 
instructions are still executable to perform the operations 
that they specify. In some embodiments, the program 
instructions are included in a library of networking functions 
available for use by various applications. 



US 2016/0344688 A1 

FIG.7 Exemplary Method 

0080 FIG. 7 is a flow diagram illustrating a method for 
IPv4 literal translation, according to Some embodiments. 
The method shown in FIG. 7 may be used in conjunction 
with any of the computer systems, devices, elements, or 
components disclosed herein, among other devices. In vari 
ous embodiments, some of the method elements shown may 
be performed concurrently, in a different order than shown, 
or may be omitted. Additional method elements may also be 
performed as desired. Flow begins at 710. 
0081. At 710, in the illustrated embodiment, mobile 
device 106 generates a request to access a network server. In 
these embodiments, the request specifies an IPv4 literal 
identifier of the network server. In some embodiments, the 
request does not specify a hostname of the network server. 
The generating may be performed in response to user input 
(e.g., entering the IPv4 literal into a browser or making a 
selection in an application that generates an IPv4 literal). In 
some embodiments, the network server is on an IPv4 net 
work that does not support IPv6 addresses and the mobile 
device 106 is on an IPv6-only network. 
0082. At 720, in the illustrated embodiment, mobile 
device 106 queries a DNS server (e.g., DNS server 64320) 
using a reserved name to determine an IPv6 prefix usable for 
IPv6 address synthesis. Mobile device 106 may determine 
the prefix based on a response from the DNS server. 
0083. At 730, in the illustrated embodiment, mobile 
device 106 synthesizes an IPv6 address based on the deter 
mined IPv6 prefix and the IPv4 literal. In some embodi 
ments, this includes generating an IPv6 address by append 
ing the IPv4 literal to the IPv6 prefix. 
0084. At 740, in the illustrated embodiment, mobile 
device 106 creates a network session (e.g., a transport layer 
session) to the network server and associates the network 
session with the synthesized IPv6 address. In some embodi 
ments, the associating is performed at the beginning of the 
network session and the IPv6 address is used throughout the 
network session. In some embodiments, the transport layer 
session is a TCP or UDP connection. In various embodi 
ments, network sessions or connections may be established 
at other layers in addition to and/or in place of the transport 
layer, using the synthesized IPv6 address. 
0085. At 750, in the illustrated embodiment, mobile 
device 106 transmits a plurality of packets to the network 
server using the network connection and using the synthe 
sized IPv6 address for each of the plurality of packets. In 
some embodiments, the transmitting is performed via a NAT 
server for routing communications between an IPV6 net 
work of mobile device 106 and an IPv4 network of the 
network server. In some embodiments, the transmission uses 
the synthesized IPv6 address for each of the plurality of 
packets without re-translating the IPv4 literal for ones of the 
plurality of packets. This may reduce power consumption 
and/or processing time relative to implementations such as 
464XLAT which translate an IPv4 literal on a per-packet 
basis. 

0086 Mobile device 106 is discusses for illustrative 
purposes but is not intended to limit the scope of the present 
disclosure. In other embodiments, various types of mobile or 
non-mobile devices may be used on various types of IPv6 
only networks, which may or may not be wireless. For 
example, similar techniques may be used with desktop 
computers and broadband cable data networks, etc. 

Nov. 24, 2016 

I0087 Embodiments described in this disclosure may be 
realized in any of various forms. For example, some 
embodiments may be realized as a computer-implemented 
method, a computer-readable memory medium, or a com 
puter system. Other embodiments may be realized using one 
or more custom-designed hardware devices Such as ASICs. 
Other embodiments may be realized using one or more 
programmable hardware elements such as FPGAs. 
I0088. In some embodiments, a non-transitory computer 
readable memory medium may be configured so that it 
stores program instructions and/or data, where the program 
instructions, if executed by a computer system, cause the 
computer system to perform a method, e.g., any of a method 
embodiments described herein, or, any combination of the 
method embodiments described herein, or, any Subset of any 
of the method embodiments described herein, or, any com 
bination of such subsets. 

I0089. In some embodiments, a device (e.g., a UE) may be 
configured to include a processor (or a set of processors) and 
a memory medium, where the memory medium stores 
program instructions, where the processor is configured to 
read and execute the program instructions from the memory 
medium, where the program instructions are executable to 
implement any of the various method embodiments 
described herein (or, any combination of the method 
embodiments described herein, or, any subset of any of the 
method embodiments described herein, or, any combination 
of such subsets). The device may be realized in any of 
various forms. 

0090 Although the embodiments above have been 
described in considerable detail, numerous variations and 
modifications will become apparent to those skilled in the art 
once the above disclosure is fully appreciated. It is intended 
that the following claims be interpreted to embrace all such 
variations and modifications. 

What is claimed is: 

1. A mobile device, comprising: 
at least one antenna; 
one or more radios coupled to the at least one antenna; 
one or more processing elements; and 
one or more memories having program instructions stored 

thereon, wherein the program instructions are execut 
able by the one or more processing elements to cause 
the mobile device to perform operations comprising: 
generating a request to access a network server, 

wherein the request specifies an Internet Protocol 
version 4 (IPv4) literal identifier of the network 
server; 

querying a domain name system (DNS) server using a 
reserved name, to determine an IPv6 prefix usable 
for IPv6 address synthesis; 

synthesizing an IPv6 address based on the determined 
IPv6 prefix and the IPv4 literal identifier; 

creating a transport layer connection to the network 
server and associating the synthesized IPv6 address 
with the transport layer connection; and 

transmitting, using the transport layer connection, a 
plurality of packets to the network server via a 
network address translation (NAT) server, wherein 
the transmitting uses the synthesized IPv6 address 
for each of the plurality of packets. 



US 2016/0344688 A1 

2. The mobile device of claim 1, wherein the transport 
layer connection is at least one of a transmission control 
protocol (TCP) connection or a user datagram protocol 
(UDP) connection. 

3. The mobile device of claim 1, wherein the IPv4 literal 
identifier is not re-translated by the device for ones of the 
plurality of packets. 

4. The mobile device of claim 1, wherein network traffic 
with the prefix is routable to the NAT server, wherein the 
NAT server is for routing communications between an 
Internet Protocol version 6 (IPv6) network of the device and 
an IPv4 network of the network server. 

5. The mobile device of claim 1, wherein the operations 
further comprise: 

executing an application, wherein the executing causes 
the generating: 

utilizing an application programming interface (API) to 
determine the IPv6 prefix and synthesize the IPv6 
address; and 

utilizing a socket interface to process packets of the 
transport layer connection. 

6. The mobile device of claim 1, wherein the reserved 
name of the DNS server is ipv4only.arpa. 

7. The mobile device of claim 1, wherein the operations 
further comprise: 

generating a request to access a second network server, 
wherein the request specifies an Internet Protocol ver 
sion 4 (IPv4) hostname of the second network server; 

requesting a record for the second network server from 
the DNS server, wherein the DNS server is a DNS64 
server; 

receiving a synthesized IPv6 record for the second net 
work server from the DNS64 server; and 

initiating a connection to the second network server, via 
the NAT server, using the synthesized IPv6 record. 

8. A method, comprising: 
generating, by a device, a request to access a network 

server, wherein the request specifies an Internet Proto 
col version 4 (IPv4) literal identifier of the network 
server; 

querying, by the device, a domain name system (DNS) 
server using a reserved name, to determine an IPv6 
prefix usable for IPv6 address synthesis: 

synthesizing, by the device, an IPv6 address based on the 
determined IPv6 prefix and the IPv4 literal identifier; 

creating, by the device, a network session to the network 
server and associating the network session with the 
synthesized IPv6 address; and 

transmitting, by the device using the network session, a 
plurality of packets to the network server, wherein the 
transmitting uses the synthesized IPv6 address for each 
of the plurality of packets. 

9. The method of claim 8, wherein the network session is 
a transmission control protocol (TCP) connection and 
wherein the IPv4 literal identifier is not re-translated by the 
device for ones of the plurality of packets. 

10. The method of claim 8, wherein the transmitting 
includes transmitting the packets via a cellular IPv6-only 
carrier network. 

11. The method of claim 8, wherein the transmitting is 
performed via a NAT64 server and wherein the DNS server 
is a DNS64 server. 

Nov. 24, 2016 

12. The method of claim 8, further comprising: 
executing, by the device, an application that generates the 

request; and 
utilizing an application programming interface (API) to 

synthesize the IPv6 address. 
13. The method of claim 8, wherein the reserved name is 

ipV4only.arpa. 
14. The method of claim 8, further comprising: 
generating, by the device, a request to access a second 

network server, wherein the request specifies an Inter 
net Protocol version 4 (IPv4) hostname of the second 
network server; 

requesting a record for the second network server from 
the DNS server, wherein the DNS server is a DNS64 
server; 

receiving a synthesized IPv6 record for the second net 
work server from the DNS64 server; and 

initiating a connection to the second network server and 
associating the connection to the second network server 
with the synthesized IPv6 record for the second net 
work server. 

15. A non-transitory computer-readable medium having 
instructions stored thereon that are executable by a comput 
ing device to perform operations comprising: 

generating a request to access a network server, wherein 
the request specifies an Internet Protocol version 4 
(IPv4) literal identifier of the network server; 

querying a domain name system (DNS) server using a 
reserved name, to determine an IPv6 prefix usable for 
IPv6 address synthesis: 

synthesizing an IPv6 address based on the determined 
IPv6 prefix and the IPv4 literal identifier; 

creating a transport layer session to the network server 
using the synthesized IPv6 address; and 

transmitting, using the transport layer session, a plurality 
of packets to the network server via a network address 
translation (NAT) server, wherein the transmitting uses 
the synthesized IPv6 address for each of the plurality of 
packets, and wherein the IPv4 literal identifier is not 
re-translated by the device for ones of the plurality of 
packets. 

16. The non-transitory computer-readable medium of 
claim 15, wherein the instructions are specified by an 
application programming interface. 

17. The non-transitory computer-readable medium of 
claim 15, wherein the instructions are included in a net 
working library. 

18. The non-transitory computer-readable medium of 
claim 15, wherein the NAT server is a NAT64 server and the 
DNS server is a DNS64 server, wherein network traffic with 
the prefix is routable to the NAT server, and wherein the 
NAT server is for routing communications between an 
Internet Protocol version 6 (IPv6) network of the device and 
an IPv4 network of the network server. 

19. The non-transitory computer-readable medium of 
claim 15, wherein the operations further comprise: 

generating a request to access a second network server, 
wherein the request specifies an Internet Protocol ver 
sion 4 (IPv4) hostname of the second network server; 

requesting a record for the second network server from 
the DNS server, wherein the DNS server is a DNS64 
server; 

receiving a synthesized IPv6 record for the second net 
work server from the DNS64 server; and 



US 2016/0344688 A1 Nov. 24, 2016 

initiating a connection to the second network server, via 
the NAT server, using the synthesized IPv6 record. 

20. The non-transitory computer-readable medium of 
claim 15, wherein the transmitting is performed via an 
IPv6-only network. 


