
Introduction to Ansible

Ansible is an agentless automation that automates deployment, configuration management

(maintain infrastructure consistency) and orchestration (execution of multiple applications in

order). Ansible gains it’s popularity due to it’s simplicity for being agentless, efficient, requires

no additional software installed on target machine, use the simple YAML and complete with

reporting.

Ansible architecture is very simple. It requires Ansible Server basically a node (laptop, PC or

server) where Ansible is installed with the module of configuration files called playbook and

inventory of target servers called hosts. Playbook consists of Roles, and Roles consists of Tasks.

Task is an individual command in Ansible. By using inventory we group the nodes by using

labels.

Ansible Server and the node talks by using passwordless SSH.

Flow of working with Ansible:

1. Create playbook and inventory in local machine

2. Create SSH to the target nodes

3. Ansible Server gathers the facts of the target nodes to get the indication of the target

nodes

4. Playbook are sent to nodes

5. Playbook are executed in the nodes

Important Terms

Ansible server: The machine where Ansible is installed and from which all tasks and playbooks

will be ran

Module: Basically, a module is a command or set of similar commands meant to be executed on

the client-side

Task: A task is a section that consists of a single procedure to be completed

Role: A way of organizing tasks and related files to be later called in a playbook

Fact: Information fetched from the client system from the global variables with the gather-facts

operation

Inventory: File containing data about the ansible client servers. Defined in later examples as

hosts file

Play: Execution of a playbook

Handler: Task which is called only if a notifier is present

Notifier: Section attributed to a task which calls a handler if the output is changed

Tag: Name set to a task which can be used later on to issue just that specific task or group of

tasks.

Setup Ansible Server

STEP 1 — Setup Ansible Server
Install Ansible and dependencies

First is Python 3.8

sudo apt install python3.8-venv
python3 –version

If your Python version returned from above is less than 3.8 then:

sudo update-alternatives --install /usr/bin/python3 \
python3 /usr/bin/python3.8 1
python3 –version

Install other prerequisite package of Python:

apt install --no-install-recommends python3-netaddr python3-

ipaddr

Next we will install the Ansible

$ sudo apt-get update

$ sudo apt-get -y install software-properties-common

$ sudo apt-add-repository ppa:ansible/ansible

$ sudo apt-get update

$ sudo apt-get install -y ansible

STEP 2— Setup SSH Connection to Target Server
Config Router to access via SSH:

R3(config)#username lab privilege 15 secret apnic

R3(config)#ip domain name summitiig.net

R3(config)#crypto key generate rsa

The name for the keys will be: R3.summitiig.net

Choose the size of the key modulus in the range of 360 to 4096

for your

 General Purpose Keys. Choosing a key modulus greater than 512

may take

 a few minutes.

How many bits in the modulus [512]: 1048

% Generating 512 bit RSA keys, keys will be non-exportable...

[OK] (elapsed time was 0 seconds)

R3(config)#

*Apr 16 14:45:22.991: %SSH-5-ENABLED: SSH 1.99 has been enabled

R3(config)#ip ssh version 2

R3(config)#line vty 0 4

R3(config-line)# login local

Try to access Router via SSH from Server.

If you are having those type of error:
ssh lab@100.68.3.5

Unable to negotiate with 100.68.3.5 port 22: no matching key

exchange method found. Their offer: diffie-hellman-group-

exchange-sha1,diffie-hellman-group14-sha1,diffie-hellman-group1-

sha1

You can solve this by configuring non standard client options by creating a file in

/etc/ssh/ssh_config.d/:
#echo "KexAlgorithms diffie-hellman-group-exchange-sha1,diffie-

hellman-group14-sha1" >>/etc/ssh/ssh_config.d/weak.conf

#echo "Ciphers aes128-cbc" >>/etc/ssh/ssh_config.d/weak.conf

Test SSH connection:
ssh lab@100.68.3.5

The authenticity of host '100.68.3.5 (100.68.3.5)' can't be

established.

RSA key fingerprint is

SHA256:Fh6of2DmmPp9dF21n+ztSPguKvWvKkSj50PTbmCk5rA.

Are you sure you want to continue connecting

(yes/no/[fingerprint])? yes

Warning: Permanently added '100.68.3.5' (RSA) to the list of

known hosts.

Password:

STEP 3-Edit hosts file

Edit hosts file on /etc/ansible/hosts and add your target server

mv /etc/ansible/hosts /etc/ansible/hosts.old

vim /etc/ansible/hosts

[ios_router]

R3 ansible_host=100.68.3.5

[ios_router:vars]

ansible_ssh_user=lab

ansible_ssh_pass=apnic

ansible_connection=network_cli

ansible_network_os=ios

STEP 4-Create your first Ansible Playbook

 Playbooks are text files written in YAML format and therefore need:

• to start with three dashes (---)

• proper indentation using spaces and not tabs!

• to start with three dots (…)

In this example we are going to automate a interface configuration:

vim interface.yml

- name: "SET IP ADDRESS ON ACCESS ROUTER"

 hosts: R3

 become: yes

 become_method: enable

 tasks:

 - name: "SET IP ADDRESS ON ACCESS ROUTER"

 cisco.ios.ios_config:

 parents: "interface FastEthernet0/0"

 lines:

 - description TO-CUST-01

 - ip address 10.0.0.0 255.255.255.254

 - ipv6 address 2001:db8:1::/127

 after: "no shutdown"

STEP 5-Testing and Running Playbook
$ ansible-playbook --syntax-check interface.yml

$ ansible-playbook interface.yml

Some points to avoid common errors in Ansible

YAML:

• Use consistent indentation: YAML relies on indentation to define the structure of the file,

so make sure to use consistent indentation throughout your playbook. Typically, two

spaces are used for indentation in Ansible YAML.

• Be mindful of colons and hyphens: Colons (:) are used to denote key-value pairs in

YAML, while hyphens (-) are used to denote list items. Make sure to use them correctly

and consistently.

• Check for proper syntax: YAML is a strict markup language, so ensure that your

playbook adheres to the correct YAML syntax. Use tools like ansible-lint or online

YAML validators to check for syntax errors.

• Use quotes for strings with special characters: If your string contains special characters

like spaces, colons, or square brackets, make sure to enclose it in single or double quotes

to avoid parsing errors.

• Validate module parameters: Each Ansible module has specific parameters and syntax

requirements. Make sure to refer to the module documentation and use the correct

parameters and values in your playbook.

• Use appropriate data types: YAML supports various data types such as strings, numbers,

lists, and dictionaries. Use the appropriate data type for each parameter or value in your

playbook to avoid type mismatch errors.

• Avoid mixing tabs and spaces: YAML can be sensitive to mixing tabs and spaces for

indentation. Stick to using spaces for indentation to avoid indentation-related errors.

• Double-check host and variable names: Make sure to use the correct host and variable

names in your playbook. Typos or mismatched names can lead to errors or unexpected

results.

• Test thoroughly: Always test your playbook on a test environment before running it in

production. This helps identify and fix any potential errors or issues before affecting your

production environment.

Following these best practices can help you avoid common errors and ensure smooth execution

of your Ansible playbooks.

Route-map in Ansible:

Create 1st Route-map by using cisco.ios.ios_route_maps module which will generate Cisco
config like:

route-map test_1 permit 10

match ip address prefix-list default

route-map test_1 permit 20

match ip address prefix-list BOGONS

route-map test_1 permit 30

match ip address prefix-list test_1_new

match rpki valid

set local-preference 100

route-map test_1 permit 40

match ip address prefix-list test_1_new

match rpki not-found

set local-preference 100

route-map test_1 deny 100

Create a playbook routemap.yml:

- name: "PLAY 1: Setup route map"

 connection: network_cli

 hosts: R3

 become: yes

 become_method: enable

 tasks:

 - name: Merge provided Route maps configuration

 cisco.ios.ios_route_maps:

 config:

 - route_map: test_1

 entries:

 - sequence: 10

 action: deny

 match:

 ip:

 address:

 prefix_lists:

 - default

 - sequence: 20

 action: deny

 match:

 ip:

 address:

 prefix_lists:

 - BOGONS

 - sequence: 30

 action: permit

 match:

 ip:

 address:

 prefix_lists:

 - test_1_new

 rpki:

 valid: true

 set:

 local_preference: 100

 - sequence: 40

 action: permit

 match:

 ip:

 address:

 prefix_lists:

 - test_1_new

 rpki:

 not_found : true

 set:

 local_preference: 100

 - sequence: 100

 action: deny

...

Check and run:
$ ansible-playbook --syntax-check routemap.yml

$ ansible-playbook routemap.yml

Lets make it to take "test_1" and "test_1_new" values from the command line in your Ansible

playbook, you can use the vars_prompt section to prompt the user for input, and then use those

input values in your playbook:

Vim routemap-r3.yml

- name: "PLAY 1: Setup route map"

 connection: network_cli

 hosts: R3

 vars_prompt:

 - name: route_map_name

 prompt: "Enter the route map name: "

 private: false

 - name: prefix_list_name

 prompt: "Enter the prefix list name: "

 private: false

 vars:

 route_map: "{{ route_map_name }}"

 prefix_list: "{{ prefix_list_name }}"

 tasks:

 - name: Merge provided Route maps configuration

 cisco.ios.ios_route_maps:

 config:

 - route_map: "{{ route_map }}"

 entries:

 - sequence: 10

 action: deny

 match:

 ip:

 address:

 prefix_lists:

 - default

 - sequence: 20

 action: deny

 match:

 ip:

 address:

 prefix_lists:

 - BOGONS

 - sequence: 30

 action: permit

 match:

 ip:

 address:

 prefix_lists:

 - "{{ prefix_list }}"

 rpki:

 valid: true

 set:

 local_preference: 1000

 - sequence: 40

 action: permit

 match:

 ip:

 address:

 prefix_lists:

 - "{{ prefix_list }}"

 rpki:

 not_found : true

 set:

 local_preference: 1000

 - sequence: 100

 action: deny

Check and run:
$ ansible-playbook --syntax-check routemap-r3.yml

$ ansible-playbook routemap-r3.yml

Now create a new playbook routemap-r3-v6.yml for IPv6 route-map. Just use “ipv6” instead of

“ip”

BGP in Ansible:

Create bgp config by using ios_config module which will generate Cisco config like:

router bgp 65002

 neighbor 100.68.3.2 remote-as 132884

 neighbor 100.68.3.2 description AS132884

 address-family ipv4

 neighbor 100.68.3.2 activate

 neighbor 100.68.3.2 soft-reconfiguration inbound

 neighbor 100.68.3.2 maximum-prefix 10 warning-only

 neighbor 100.68.3.2 route-map CLIENT-IN in

 neighbor 100.68.3.2 route-map DEFAULT out

Where Peer IP (100.68.3.2), remote-as (132884), description, in and out route-map name will

take from the command line:

nano ebgp-r3.yml

- name: "PLAY 1: Setup iBGP Peer to R4"

 hosts: R3

 connection: network_cli

 become: yes

 become_method: enable

 vars_prompt:

 - name: peer_ip

 prompt: "Enter Neighbor IP"

 private: false

 - name: peer_asn

 prompt: "Enter the remote-as"

 private: false

 - name: peer_des

 prompt: "Enter the Neighbor description"

 private: false

 - name: prefix_limit

 prompt: "Enter Prefix limit for this Neighbor"

 private: false

 - name: peer_map_in

 prompt: "Enter the route-map in name"

 private: false

 - name: peer_map_out

 prompt: "Enter the route-map out name"

 private: false

 tasks:

 - name: "TASK 1: Configure BGP Peer"

 ios_config:

 commands:

 - "router bgp 65002"

 - " neighbor {{ peer_ip }} remote-as {{ peer_asn }}"

 - " neighbor {{ peer_ip }} description {{ peer_des }}"

 - " address-family ipv4"

 - " neighbor {{ peer_ip }} activate"

 - " neighbor {{ peer_ip }} soft-reconfiguration inbound"

 - " neighbor {{ peer_ip }} maximum-prefix {{ prefix_limit }}

warning-only"

 - " neighbor {{ peer_ip }} route-map {{ peer_map_in }} in"

 - " neighbor {{ peer_ip }} route-map {{ peer_map_out }} out"

 register: bgp_setup

 - name: "SUMMARY TASK: Debug output"

 debug:

 var: bgp_setup

Check and run:
$ ansible-playbook --syntax-check ebgp-r3.yml

$ ansible-playbook ebgp-r3.yml

Now create a new playbook ebgp-r3-v6.yml for IPv6 route-map. Just use “ipv6” instead of

“ipv4” in address-family

	Introduction to Ansible
	Important Terms
	Setup Ansible Server
	STEP 1 — Setup Ansible Server
	STEP 2— Setup SSH Connection to Target Server
	STEP 3-Edit hosts file
	STEP 4-Create your first Ansible Playbook
	STEP 5-Testing and Running Playbook

	Some points to avoid common errors in Ansible YAML:
	Route-map in Ansible:
	BGP in Ansible:

