EFFICIENT AND SECURE INTERNET ROUTING: BEST PRACTICES AND AUTOMATION

Presented by Rafeeun Noby Babir

INTRODUCTION

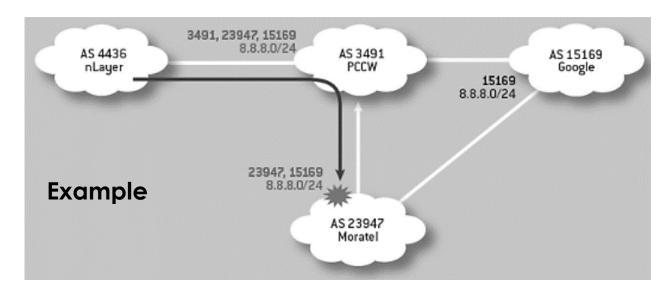
Topic: Efficient and Secure Internet Routing: Best Practices and Automation

Agenda:

Overview of Internet routing,

Routing Best Current Practices (BCP),

Automation in large-scale network deployment

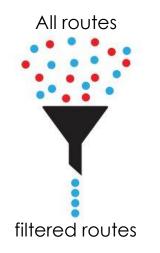

WHAT IS INTERNET ROUTING?

- Internet routing is the process of forwarding data packets from one network to another through a network of routers.
- The Internet routing system
 - Autonomous systems (AS) that exchange routing information
 - Standard protocols such as Border Gateway Protocol (BGP)

CHALLENGES WITH INTERNET ROUTING

- Internet routing is a complex process
 - multiple entities
 - number of challenges that need to be addressed
- Internet routing is the lack of
 - visibility
 - control over the routing paths
- Risk of **security threats**
 - routing attacks
 - prefix hijacking
 - route leaks

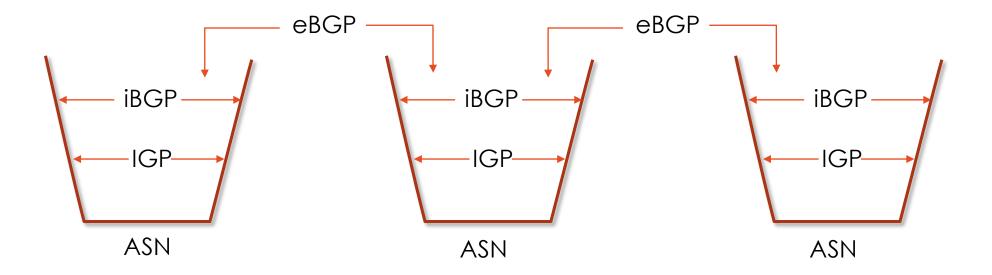
On November 6, 2012, a misconfiguration at Moratel did just that, "leaking" the route of 8.8.8.0/24


ROUTING BEST CURRENT PRACTICES (BCP)

• Routing Best Current Practices (BCP) are:

- Review of recommendations to ensure the BGP is Configured optimally, Operating optimally, Configured securely, Operating securely
- Covers routing security, route filtering, and operational practices
- Designed to help network operators improve reliability and security of routing infrastructure

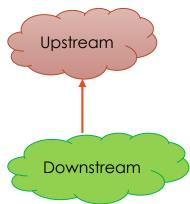
• Examples of BCPs include:


- Route filtering to prevent route leaks
- Prefix filtering to prevent prefix hijacking
- Secure BGP to prevent attacks

INTERNAL ROUTING PROTOCOL (IGP) AND BGP USAGE


- IGPs (OSPF/IS-IS):
 - used for carrying infrastructure addresses, not Internet or customer prefixes
 - Design goal: minimize the number of prefixes in IGP for scalability and rapid convergence
- BGP
 - used both internally (iBGP) and externally (eBGP)
 - iBGP used to carry some/all Internet prefixes across the backbone and customer prefixes
 - eBGP used to exchange prefixes with other ASes and implement routing policy
- DO NOT
 - distribute BGP prefixes into an IGP or distribute IGP routes into BGP
 - use an IGP to carry customer prefixes

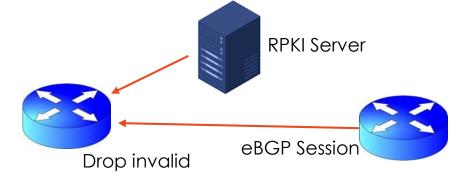
INTERNAL ROUTING PROTOCOL (IGP) AND BGP USAGE


PREFIX INBOUND FILTER

- When receiving prefixes from other ASNs, there are three scenarios to consider:
 - Customer talking BGP
 - Peer talking BGP
 - Upstream/Transit talking BGP
- Each of these scenarios has different filtering requirements and should be considered separately.
- Effective filtering is important to prevent the propagation of bad or malicious routes across the Internet.
- Do Not
 - accept ipv4 prefixes longer than /24
 - accept ipv6 prefixes longer than /48

PREFIX INBOUND FILTER: FROM CUSTOMER

- ISPs should only accept prefixes that have been assigned or allocated to their downstream customers.
- If an ISP has assigned address space to its customer, the customer is entitled to announce it back to the ISP.
- If the ISP has NOT assigned address space to its customer, then:
 - Check in the five RIR databases (ie RADB) to see if the address space has really been assigned to the customer.
- Validate prefix announcements received from EBGP peers
 - Drop invalid, accept valid, low priority for those with no ROA



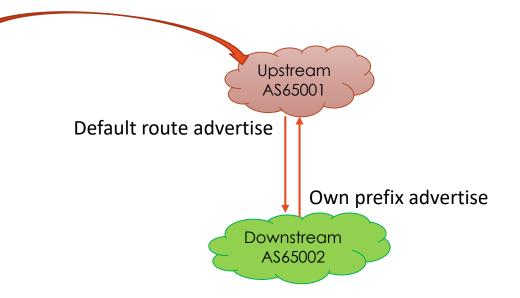
PREFIX INBOUND FILTER: FROM CUSTOMER

• An example of RADB output

route: descr: origin:	103.15.246.0/24This prefix is allowed to originated from that ASN
country:	BD
mnt-lower:	MAINT-SUMMITCOMMUNICATIONS-BD
mnt-routes:	MAINT-SUMMITCOMMUNICATIONS-BD
mnt-by:	MAINT-SUMMITCOMMUNICATIONS-BD
changed:	shahidullah.kaisar@summitcommunications.net 20140303
source:	APNIC

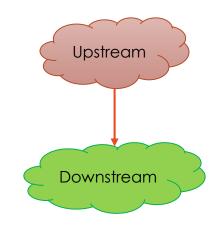
 RPKI server Configuration example for Cisco: router bgp 65002 bgp log-neighbor-changes bgp rpki server tcp 100.68.3.6 port 3323 refresh 900

PREFIX INBOUND FILTER: FROM CUSTOMER


• An example of customer configuration in upstream (AS65001):

router bgp 65001 neighbor 100.68.1.2 remote-as 65002

address-family ipv4 neighbor 100.68.1.2 activate neighbor 100.68.1.2 prefix-list customer in neighbor 100.68.1.2 prefix-list default out exit-address-family


ip prefix-list customer seq 5 permit 100.68.2.0/23 le 24

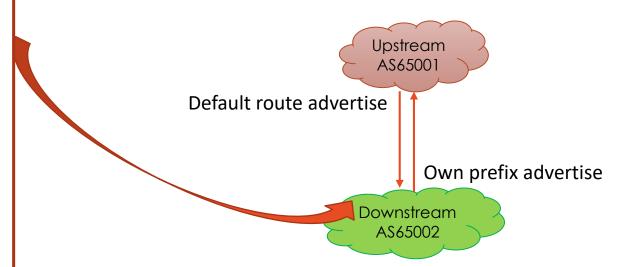
ip prefix-list default seq 5 permit 0.0.0/0

PREFIX INBOUND FILTER: FROM UPSTREAM/PEER

- Upstream/Transit Provider is an ISP you pay for transit to the whole Internet
 - Receiving prefixes from them is not recommended unless necessary for traffic engineering
 - Simplify routing by asking them to either originate a default route or announce one prefix you can use as default.
- Peers are ISPs that exchange prefixes with each other
 - You only accept and announce the prefixes that you have agreed upon with your peer

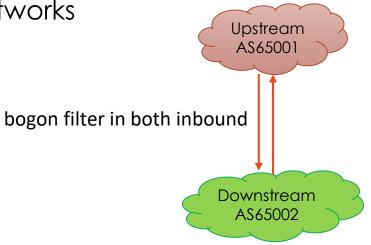
PREFIX INBOUND FILTER: FROM UPSTREAM/PEER

• An example of upstream configuration in customer router:


router bgp 65002 neighbor 100.68.1.1 remote-as 65001

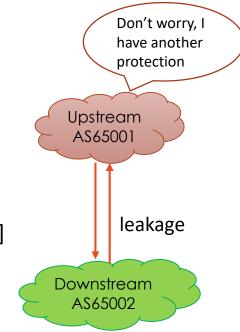
```
address-family ipv4
neighbor 100.68.1.1 activate
neighbor 100.68.1.1 prefix-list upstream in
neighbor 100.68.1.1 prefix-list export out
exit-address-family
```

```
!
```

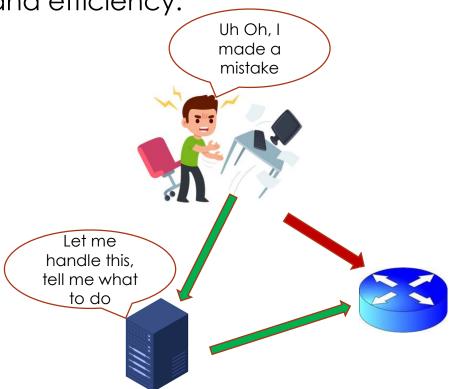

ip prefix-list export seq 5 permit 100.68.2.0/24 ip prefix-list export seq 10 permit 100.68.3.0/24

ip prefix-list upstream seq 5 permit 0.0.0/0

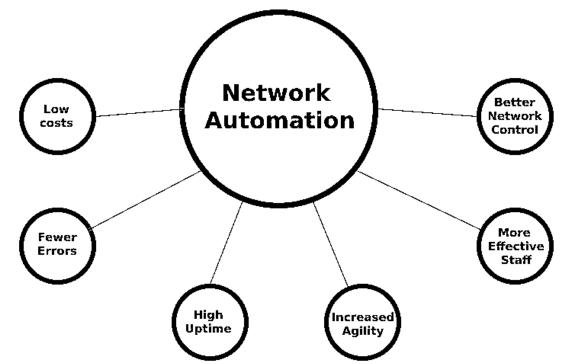
PREFIX INBOUND FILTER: BOGON


- Bogon prefix is a route that
 - should never appear in the Internet routing table
 - often used as the source addresses of DDoS attacks
- Filter or deny bogon prefixes from both upstream and customer routes
- Team Cymru Bogon list for reference:
 - https://www.team-cymru.com/bogon-networks

BGP MAXIMUM PREFIX LIMIT


- Configure the maximum number of prefixes a BGP router will receive from a peer
 - Set the "maximum prefixes" to be 2xN, where N is the expected number of prefixes
 - If the limit is exceeded, the router will warn or tear down the BGP session
 - Even if receiving the full BGP table, setting a limit is still a good idea
 - This prevents against major accidental leaks.
- Configuration example for Cisco:

router bgp [AS_number] address-family ipv4 neighbor [IP_address] maximum-prefix [number of prefixes] warning-only/restart [restart interval]


AUTOMATION IN LARGE-SCALE NETWORK DEPLOYMENT

- Automation is essential for managing large-scale network deployments in the growing Internet landscape.
 - Helps reduce the risk of errors and increases speed and efficiency.
- There are various network automation tools and platforms available:
 - Paramiko,
 - Netmiko,
 - NAPALM,
 - Ansible
 - Nornir

BENEFITS OF AUTOMATION IN NETWORK DEPLOYMENT

- Automation is essential for managing large-scale network deployments in the growing Internet landscape with complex routing systems.
- Automation benefits for network operators:

SUMMARY

- Internet routing is a complex process.
- Requires careful management and best practices for reliable and secure connectivity.
- Best practices for network operators:
 - Follow Routing Best Current Practices (BCP).
 - Leverage automation tools.
- Benefits of following best practices:
 - Improved efficiency, reliability, and security of routing infrastructure.